Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.045
Filtrar
1.
J Environ Manage ; 356: 120670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531142

RESUMO

One of the major issues of modern society is water contamination with different organic, inorganic, and contaminants bacteria. Finding cost-effective and efficient materials and methods for water treatment and environment remediation is among the scientists' most important considerations. Hollow-structured nanomaterials, including hollow fiber membranes, hollow spheres, hollow nanoboxes, etc., have shown an exciting capability for wastewater refinement approaches, including membrane technology, adsorption, and photocatalytic procedure due to their extremely high specific surface area, high porosity, unique morphology, and low density. Diverse hollow nanostructures could potentially eliminate organic contaminants, including dyes, antibiotics, oil/water emulsions, pesticides, and other phenolic compounds, inorganic pollutants, such as heavy metal ions, salts, phosphate, bromate, and other ions, and bacteria contaminations. Here, a comprehensive overview of hollow nanostructures' fabrication and modification, water contaminant classification, and recent studies in the water treatment field using hollow-structured nanomaterials with a comparative attitude have been provided, indicating the privilege abd detriments of this class of nanomaterials. Eventually, the future outlook of employing hollow nanomaterials in water refinery systems and the upcoming challenges arising in scaling up are also propounded.


Assuntos
Poluentes Ambientais , Metais Pesados , Nanoestruturas , Poluentes Químicos da Água , Purificação da Água , Poluentes Ambientais/química , Nanoestruturas/química , Purificação da Água/métodos , Metais Pesados/química , Adsorção , Íons , Poluentes Químicos da Água/química
2.
J Hazard Mater ; 470: 134109, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547751

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity. Additionally, the surfactant Tween ® 80 and cell immobilization techniques were used to enhance bioremediation. Total PAH removal ranged from 70-95% for fluorene, 44-89% for phenanthrene, 86-97% for anthracene, and 6.5-78% for pyrene. Maximum removal was achieved with immobilized cells in the presence of Tween ® 80. Investigation of PAH metabolites produced by 21198 revealed a complex mixture of hydroxylated compounds, quinones, and ring-fission products. Toxicity appeared to increase after bioremediation, manifesting as mortality and developmental effects in embryonic zebrafish. 21198's ability to rapidly transform PAHs of a variety of molecular structures and sizes suggests that 21198 can be a valuable microorganism for catalyzing PAH remediation. However, implementing further treatment processes to address toxic PAH metabolites should be pursued to help lower post-remediation toxicity in future studies.


Assuntos
Biodegradação Ambiental , Células Imobilizadas , Hidrocarbonetos Policíclicos Aromáticos , Rhodococcus , Tensoativos , Peixe-Zebra , Rhodococcus/metabolismo , Tensoativos/toxicidade , Tensoativos/química , Tensoativos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Animais , Células Imobilizadas/metabolismo , Polissorbatos/toxicidade , Polissorbatos/química , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Poluentes Ambientais/química , Fenantrenos/toxicidade , Fenantrenos/metabolismo , Fenantrenos/química , Embrião não Mamífero/efeitos dos fármacos
3.
Chemosphere ; 352: 141333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336036

RESUMO

Persulfate-based advanced oxidation processes (PS-AOPs) show a bright prospect in sewage purification. The development of efficient catalysts with simple preparation process and eco-friendliness is the key for their applying in practical water treatment. Herein, a bimetallic Cu-Fe metal organic framework (MOF) was simply synthesized by using one-pot solvothermal methods and employed for activating peroxymonosulfate (PMS) to degrade organic pollutants in water. The Cu-Fe-MOF/PMS exhibited excellent degradation efficiencies (over 95% in 30 min) for a variety of pollutants, including phenol, bisphenol A, 2,4-dichlorophenol, methyl blue, rhodamine B, tetracycline and sulfamethoxazole. The degradation efficiency was impacted by dosages of Cu-Fe-MOF, PMS concentrations, reaction temperature, solution pH and anionic species. Phenol could be efficiently decomposed in a wide pH range of 5-9, with the highest degradation and mineralization efficiency of nearly 100% and 70%, respectively. Free radicals and non-free radicals participated in degrading of phenol at the same time, with dominantly free radical process, because sulfate radicals (SO4·-) and hydroxyl radicals (·OH) were the primary active substances by contribution calculation. Cu-Fe-MOF was acted as electron shuttle between molecules of phenol and PMS, and the cooperation effect of Fe and Cu on the Cu-Fe-MOF promoted the electron transfer, achieving the high degradation efficiency of phenol. Thus, Cu-Fe-MOF is an ideal catalyst for activating PMS, which is conducive to promote the applying of catalyst-activated PMS processes for practical wastewater treatments.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Ferro/química , Poluentes Ambientais/química , Elétrons , Peróxidos/química , Fenóis
4.
Environ Res ; 243: 117830, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056611

RESUMO

Water scarcity is a pressing issue experienced in numerous countries and is expected to become increasingly critical in the future. Anthropogenic activities such as mining, agriculture, industries, and domestic waste discharge toxic contaminants into natural water bodies, causing pollution. Addressing these environmental crises requires tackling the challenge of removing pollutants from water. Graphene oxide (GO), a form of graphene functionalized with oxygen-containing chemical groups, has recently garnered renewed interest due to its exceptional properties. These properties include a large surface area, mechanical stability, and adjustable electrical and optical characteristics. Additionally, surface functional groups like hydroxyl, epoxy, and carboxyl groups make GO an outstanding candidate for interacting with other materials or molecules. Because of its expanded structural diversity and enhanced overall properties, GO and its composites hold significant promise for a wide range of applications in energy storage, conversion, and environmental protection. These applications encompass hydrogen storage materials, photocatalysts for water splitting, the removal of air pollutants, and water purification. Serving as electrode materials for various lithium batteries and supercapacitors. Graphene-based materials, including graphene, graphene oxide, reduced graphene oxide, graphene polymer nanocomposites, and graphene nanoparticle metal hybrids, have emerged as valuable tools in energy and environmental remediation technologies. This review article provides an overview of the significant impact of graphene-based materials in various areas. Regarding energy-related topics, this article explores the applications of graphene-based materials in supercapacitors, lithium-ion batteries, and catalysts for fuel cells. Additionally, the article investigates recent advancements in detecting and treating persistent organic pollutants (POPs) and heavy metals using nanomaterials. The article also discusses recent developments in creating innovative nanomaterials, nanostructures, and treatment methods for addressing POPs and heavy metals in water. It aims to present the field's current state and will be a valuable resource for individuals interested in nanomaterials and related materials.


Assuntos
Poluentes Ambientais , Grafite , Metais Pesados , Nanocompostos , Humanos , Grafite/química , Lítio , Poluentes Ambientais/química , Metais Pesados/química , Água/química
5.
J Mol Biol ; 436(3): 168411, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135181

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor belonging to the bHLH/PAS protein family and responding to hundreds of natural and chemical substances. It is primarily involved in the defense against chemical insults and bacterial infections or in the adaptive immune response, but also in the development of pathological conditions ranging from inflammatory to neoplastic disorders. Despite its prominent roles in many (patho)physiological processes, the lack of high-resolution structural data has precluded for thirty years an in-depth understanding of the structural mechanisms underlying ligand-binding specificity, promiscuity and activation of AHR. We recently reported a cryogenic electron microscopy (cryo-EM) structure of human AHR bound to the natural ligand indirubin, the chaperone Hsp90 and the co-chaperone XAP2 that provided the first experimental visualization of its ligand-binding PAS-B domain. Here, we report a 2.75 Å resolution structure of the AHR complex bound to the environmental pollutant benzo[a]pyrene (B[a]P). The structure substantiates the existence of a bipartite PAS-B ligand-binding pocket with a geometrically constrained primary binding site controlling ligand binding specificity and affinity, and a secondary binding site contributing to the binding promiscuity of AHR. We also report a docking study of B[a]P congeners that validates the B[a]P-bound PAS-B structure as a suitable model for accurate computational ligand binding assessment. Finally, comparison of our agonist-bound complex with the recently reported structures of mouse and fruit fly AHR PAS-B in different activation states suggests a ligand-induced loop conformational change potentially involved in the regulation of AHR function.


Assuntos
Benzo(a)pireno , Poluentes Ambientais , Receptores de Hidrocarboneto Arílico , Humanos , Benzo(a)pireno/química , Sítios de Ligação , Ligantes , Domínios Proteicos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/química , Poluentes Ambientais/química
6.
Chemosphere ; 346: 140608, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925026

RESUMO

The rapid global expansion of industrialization has resulted in the discharge of a diverse range of hazardous contaminants into the ecosystem, leading to extensive environmental contamination and posing a pressing ecological concern. In this context, activated carbon (AC) has emerged as a highly promising adsorbent, offering significant advantages over conventional forms. For instance, AC has demonstrated remarkable adsorption capabilities, as evidenced by the successful removal of atrazine and ibuprofen using KOH and KOH-CO2-activated char, achieving impressive adsorption rates of 90% and 95%, respectively, at an initial dosage of 10 mg L-1. Moreover, AC can effectively adsorb aromatic compounds through π-π stacking interactions. The aromatic rings in organic molecules can align and interact with the carbon atoms in AC's structure, leading to effective adsorption. In this review, by employing a systematic analysis of recent research findings (majorly from 2015 to 2023), an in-depth exploration of AC's evolution and its wide-ranging applications in adsorbing and remediating emerging pollutants, including dyes, organic contaminants, and hazardous gases and mitigating the adverse impacts of such emerging pollutants on ecosystems have been discussed. It serves as a valuable resource for researchers, professionals, and policymakers involved in environmental remediation and pollution control, facilitating the development of sustainable and effective strategies for mitigating the global impact of emerging pollutants.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Poluentes Ambientais/química , Ecossistema , Carvão Vegetal , Poluição Ambiental , Adsorção , Poluentes Químicos da Água/química
7.
Environ Sci Pollut Res Int ; 30(58): 121393-121419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37999837

RESUMO

Microplastics (MPs) and surfactants (STs) are emerging pollutants in the environment. While many studies have focused on the interactions of STs with MPs, there has not been a comprehensive review focusing on the effect of STs on MPs in aquatic ecosystems. This review summarizes methods for removal of MPs from wastewater (e.g., filtration, flotation, coagulation/flocculation, adsorption, and oxidation-reduction) and the interactions and effects of STs with MPs (adsorption, co-adsorption, desorption, and toxicity). STs can modify MPs surface properties and influence their removal using different wastewater treatments, as well as the adsorption-desorption of both organic and inorganic chemicals. The concentration of STs is a crucial factor that impacts the removal or adsorption of pollutants onto MPs. At low concentrations, STs tend to facilitate MPs removal by flotation and enhance the adsorption of pollutants onto MPs. High ST concentrations, mainly above the critical micelle concentrations, cause MPs to become dispersed and difficult to remove from water while also reducing the adsorption of pollutants by MPs. Excess STs form emulsions with the pollutants, leading to electrostatic repulsion between MPs/STs and the pollutant/STs. As for the toxicity of MPs, the addition of STs to MPs shows complicated results, with some cases showing an increase in toxicity, some showing a decrease, and some showing no effect.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos/química , Plásticos/química , Águas Residuárias , Ecossistema , Tensoativos , Poluentes Ambientais/química , Poluentes Químicos da Água/análise , Adsorção
8.
Ecotoxicol Environ Saf ; 268: 115706, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992639

RESUMO

The utilization of phthalates and bisphenol A (BPA) as the major component in plastic and its derivative industry has raised concerns among the public due to the harmful effects caused by these organic pollutants. These pollutants are found to exhibit unique physicochemical properties that allow the pollutants to have prolonged existence in the environment, thus causing damage to the environment. Since phthalates and bisphenol A are used in a variety of industrial applications, the industry must recover these compounds from its water before releasing the pollutants into the environment. As a result, these materials have a promising future in industrial applications. Therefore, the discovery of new quick and reliable abatement technologies is important to ensure that these organic pollutants can be detected and removed from the water sources. This review highlights the use of the adsorption method to remove phthalates and BPA from water sources by employing novel modified adsorbent magnetite functionalized covalent organic frameworks (MCOFs). MCOFs is a new class of porous materials that have demonstrated promising features in a variety of applications due to their adaptable structures, significant surface areas, configurable porosity, and customizable chemistry. The structural attributes, functional design strategies, and specialized for environmental applications before offering some closing thoughts and suggestions for further research were discussed in this paper in addition to developing an innovative solution for the industry to the accessibility for clean water.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Poluentes Químicos da Água , Poluentes Ambientais/química , Óxido Ferroso-Férrico , Adsorção , Poluentes Químicos da Água/análise , Água
9.
Environ Sci Pollut Res Int ; 30(56): 118801-118829, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922083

RESUMO

Removal of contaminants via adsorption and catalysis have received a significant interest as energy and money-saving solutions for treating the world's wastewater. Metal-organic frameworks (MOFs), a newly discovered class of porous crystalline materials, have demonstrated tremendous promise in the removal and destruction of contaminants for water purification. In order to improve the interactions of MOFs with the target pollutants for their selective removal and degradation, the Schiff base functionalities emerged as promising active sites. Through pre- and post-synthetic alterations, Schiff base functionalities are integrated into the pore cages of MOF adsorbent materials. To understand the adsorptive/catalytic mechanism, potential interactions between the Schiff base sites and the target pollutants are discussed. Based on cutting-edge techniques for their synthesis, this paper examines current developments in the creation of Schiff base-functionalized MOFs as innovative materials for adsorptive removal and catalytic degradation of contaminants for water remediation.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Poluentes Ambientais/química , Estruturas Metalorgânicas/química , Bases de Schiff , Águas Residuárias , Adsorção
10.
Chemosphere ; 345: 140419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37848104

RESUMO

In response to the growing global concern over environmental pollution, the exploration of sustainable and eco-friendly materials derived from biomass waste has gained significant traction. This comprehensive review seeks to provide a holistic perspective on the utilization of biomass waste as a renewable carbon source, offering insights into the production of environmentally benign and cost-effective carbon-based materials. These materials, including biochar, carbon nanotubes, and graphene, have shown immense promise in the remediation of polluted soils, industrial wastewater, and contaminated groundwater. The review commences by elucidating the intricate processes involved in the synthesis and functionalization of biomass-derived carbon materials, emphasizing their scalability and economic viability. With their distinctive structural attributes, such as high surface areas, porous architectures, and tunable surface functionalities, these materials emerge as versatile tools in addressing environmental challenges. One of the central themes explored in this review is the pivotal role that carbon materials play in adsorption processes, which represent a green and sustainable technology for the removal of a diverse array of pollutants. These encompass noxious organic compounds, heavy metals, and organic matter, encompassing pollutants found in soils, groundwater, and industrial wastewater. The discussion extends to the underlying mechanisms governing adsorption, shedding light on the efficacy and selectivity of carbon-based materials in different environmental contexts. Furthermore, this review delves into multifaceted considerations, spanning the spectrum from biomass and biowaste resources to the properties and applications of carbon materials. This holistic approach aims to equip researchers and practitioners with a comprehensive understanding of the synergistic utilization of these materials, ultimately facilitating effective and affordable strategies for combatting industrial wastewater pollution, soil contamination, and groundwater impurities.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Águas Residuárias , Biomassa , Poluentes Ambientais/química , Solo
11.
Environ Res ; 239(Pt 2): 117406, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839529

RESUMO

The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.


Assuntos
Poluentes Ambientais , Porfirinas , Poluentes Ambientais/química , Porosidade , Polímeros/química
12.
Ecotoxicol Environ Saf ; 264: 115435, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722303

RESUMO

Introducing co-catalysts to enhance the activation of cuprous-mediated peroxymonosulfate (PMS) and induce the continuous generation of highly reactive oxygen species is promising. The function, effectiveness, and acceleration mechanism of co-catalysts in the cuprous-mediated PMS activation process were fully explored in this work, which focused on rhodamine B as the target contaminants. The results demonstrated that molybdenum (Mo) powder was a superb co-catalyst, and that the reaction of cuprous-mediated PMS system was carried out by surface Mo species as opposed to Mo ions in the solution. The Cu (II)/Cu(I) cycle was primarily encouraged by the Mo0, which also caused abundant ·HO and 1O2 and minimal SO4·- and ·O2- to be produced from PMS. The Mo/Cu2+/PMS system exhibited high removal efficiency towards typical pollutants, especially ciprofloxacin, methyl orange, malachite green, and crystal violet, with removal rates up to 93%, 99%, 97%, and 92%, respectively. Additionally, this system showed excellent adaptability to complex water environments. After four cycles, the Mo powder retained its properties and morphology, and the target pollutants could still maintain an 82% degradation efficiency. This study provides a basis for enhancing cuprous-mediated PMS activation for wastewater treatment.


Assuntos
Poluentes Ambientais , Peróxidos , Pós , Peróxidos/química , Espécies Reativas de Oxigênio/química , Molibdênio , Poluentes Ambientais/química
13.
Environ Sci Pollut Res Int ; 30(48): 105742-105755, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37715903

RESUMO

In this work, we have fabricated a novel Fenton-like ferrihydrite/MoS2 (Fh/MoS2) composite and verified that the introduction of a small amount of iron on the surface of MoS2 can directly promote the exposure of Mo4+, finally enhancing the catalytic activity of the catalyst. Even though the content of iron element is only 1.19% in the composite, the reaction rate constant of Fh/MoS2 system for the degradation of environmental pollutants, such as organic dyes, antibiotic, and ionic liquid, is all much better than that of pure MoS2 system, which is attributed to much more generation of reactive oxygen species derived from synergistic effect of Fe3+/Fe2+ and Mo4+/Mo6+ redox cycles. The results of XPS and low-temperature EPR confirm that the exposure amount of Mo4+ active sites of 10% Fh/MoS2 is greatly increased, which is conducive to the conversion of Fe3+ to Fe2+ in the reaction process, thus effectively promoting the activation of H2O2.


Assuntos
Poluentes Ambientais , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Poluentes Ambientais/química , Molibdênio/química , Ferro/química , Catálise
14.
Chemosphere ; 339: 139678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37527742

RESUMO

Organic pollutants pose a significant threat to water safety, and their degradation is of paramount importance. Photocatalytic technology has emerged as a promising approach for environmental remediation, and Bismuth ferrite (BiFeO3) has been shown to exhibit remarkable potential for photocatalytic degradation of water pollutants, with its excellent crystal structure properties and visible light photocatalytic activity. This review presents an overview of the crystal properties and photocatalytic mechanism of perovskite bismuth ferrite (BiFeO3), as well as a summary of various strategies for enhancing its efficiency in photocatalytic degradation of organic pollutants. These strategies include pure phase preparation, microscopic modulation, composite modification of BiFeO3, and the integration of Fenton-like reactions and external field-assisted methods to improve its photocatalytic performance. The review emphasizes the impact of each strategy on photocatalytic enhancement. By providing comprehensive strategies for improving the efficiency of BiFeO3 photocatalysis, this review inspires new insights for efficient degradation of organic pollutants using BiFeO3 photocatalysis and contributes to the development of photocatalysis in environmental remediation.


Assuntos
Bismuto , Poluentes Ambientais , Bismuto/química , Catálise , Poluentes Ambientais/química
15.
Bioengineered ; 14(1): 2244754, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37553794

RESUMO

Over the years, it has become evident that microplastics are one of the most important contaminants of concern requiring significant attention. The large abundance of microplastics that are currently in the environment poses potential toxicity risks to all organisms that are exposed to them. Microplastics have been found to affect the physiological and biological processes in marine and terrestrial organisms. As well as being a contaminant of concern in itself, microplastics also have the ability to act as vectors for other contaminants. The potential for microplastics to carry pollutants and transfer them to other organisms has been documented in the literature. Microplastics have also been linked to hosting antibiotic resistant bacteria and antibiotic resistance genes which poses a significant risk to the current health system. There has been a significant increase in research published surrounding the topic of microplastics over the last 5 years. As such, it is difficult to determine and find up to date and relevant information. This overview paper aims to provide a snapshot of the current and emerging sources of microplastics, how microplastics can act as a contaminant and have toxic effects on a range of organisms and also be a vector for a large variety of other contaminants of concern. The aim of this paper is to act as a tool for future research to reference relevant and recent literature in this field.


Assuntos
Microplásticos , Microplásticos/química , Humanos , Poluentes Ambientais/química , Bibliometria , Monitoramento Ambiental
16.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446768

RESUMO

Due to the ever-growing global population, it is necessary to develop highly effective processes that minimize the impact of human activities and consumption on the environment. The levels of organic and inorganic contaminants have rapidly increased in recent years, posing a threat to ecosystems. Removing these toxic pollutants from the environment is a challenging task that requires physical, chemical, and biological methods. An effective solution involves the use of novel engineered materials, such as silica-based nanostructured materials, which exhibit a high removal capacity for various pollutants. The starting materials are also thermally and mechanically stable, allowing for easy design and development at the nanoscale through versatile functionalization procedures, enabling their effective use in pollutant capture. However, improvements concerning mechanical properties or applicability for repeated cycles may be required to refine their structural features. This review focuses on hybrid/composite polymer-silica nanostructured materials. The state of the art in nanomaterial synthesis, different techniques of functionalization, and polymer grafting are described. Furthermore, it explores the application of polymer-modified nanostructured materials for the capture of heavy metals, dyes, hydrocarbons and petroleum derivatives, drugs, and other organic compounds. The paper concludes by offering recommendations for future research aimed at advancing the application of polymer-silica nanostructured materials in the efficiency of pollutant uptake.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Nanoestruturas , Humanos , Ecossistema , Polímeros , Dióxido de Silício , Poluentes Ambientais/química
17.
Waste Manag ; 168: 272-280, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37329833

RESUMO

Due to ecotoxicity, zinc (Zn) as a heavy metal from electronic waste (e-waste) has been a source of pollution to soil and water for several decades. This study proposes a solution to this serious environmental problem via a self-consumed strategy to stabilize Zn in anode residues. This unique method uses cathode residues from spent zinc-manganese oxide (Zn-Mn) batteries as a stabilized matrix via thermal treatment. More specifically, the strategy incorporates zinc metal into a chemically durable matrix comprised of a lattice of AB2O4 compounds. Results demonstrate that 5-20 wt% of anode residue were fully incorporated into the cathode residue to form a Mn3-xZnxO4 solid solution after sintering at 1300 ℃ for 3 h. The lattice parameters of the Mn3-xZnxO4 solid solution reveal an approximately linear decreasing evolution with the addition of anode residue. To determine the occupancy of Zn in the crystal structure of the products, we used Raman and Rietveld refinement processes; the results reveal that Mn2+ in the 4a site was gradually replaced by Zn2+. We then used a prolonged toxicity leaching procedure to evaluate the Zn stabilization effect after phase transformation; this showed that the Zn leachability of sintered anode-doped cathode sample was over 40 folds lower than that of untreated anode residue. Therefore, this study presents an economical and effective strategy for mitigating the presence of heavy metal pollutants derived from e-waste.


Assuntos
Poluentes Ambientais , Metais Pesados , Zinco/química , Metais Pesados/química , Manganês , Poluentes Ambientais/análise , Poluentes Ambientais/química , Ácidos , Eletrodos
18.
J Environ Manage ; 342: 118254, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295147

RESUMO

Chlorophenols represent one of the most abundant families of toxic pollutants emerging from various industrial manufacturing units. The toxicity of these chloroderivatives is proportional to the number and position of chlorine atoms on the benzene ring. In the aquatic environment, these pollutants accumulate in the tissues of living organisms, primarily in fishes, inducing mortality at an early embryonic stage. Contemplating the behaviour of such xenobiotics and their prevalence in different environmental components, it is crucial to understand the methods used to remove/degrade the chlorophenol from contaminated environment. The current review describes the different treatment methods and their mechanism towards the degradation of these pollutants. Both abiotic and biotic methods are investigated for the removal of chlorophenols. Chlorophenols are either degraded through photochemical reactions in the natural environment, or microbes, the most diverse communities on earth, perform various metabolic functions to detoxify the environment. Biological treatment is a slow process because of the more complex and stable structure of pollutants. Advanced Oxidation Processes are effective in degrading such organics with enhanced rate and efficiency. Based on their ability to generate hydroxyl radicals, source of energy, catalyst type, etc., different processes such as sonication, ozonation, photocatalysis, and Fenton's process are discussed for the treatment or remediation efficiency towards the degradation of chlorophenols. The review entails both advantages and limitations of treatment methods. The study also focuses on reclamation of chlorophenol-contaminated sites. Different remediation methods are discussed to restore the degraded ecosystem back in its natural condition.


Assuntos
Clorofenóis , Poluentes Ambientais , Poluentes Químicos da Água , Clorofenóis/química , Ecossistema , Poluentes Ambientais/química , Oxirredução , Poluentes Químicos da Água/metabolismo
19.
Chemosphere ; 335: 139181, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37302505

RESUMO

Metal cluster catalysts have large atomic load, interaction between atomic sites, and wide application of catalysis. In this study, a Ni/Fe bimetallic cluster material was prepared by a simple hydrothermal method and used as an efficient catalyst to activate the degradation system of peroxymonosulfate (PMS), which showed nearly 100% tetracycline (TC) degradation performance over a wide pH range (pH = 3-11). The results of electron paramagnetic resonance test, quenching experiment and density functional theory (DFT) calculation show that the non-free radical pathway electron transfer efficiency of the catalytic system is effectively improved, and a large number of PMS are captured and activated by high density Ni atomic clusters in Ni/Fe bimetallic clusters. The degradation intermediates identified by LC/MS showed that TC was efficiently degraded into small molecules. In addition, the Ni/Fe bimetallic cluster/PMS system has excellent efficiency for degrading various organic pollutants and practical pharmaceutical wastewater. This work opens up a new way for metal atom cluster catalysts to efficiently catalyze the degradation of organic pollutants in PMS systems.


Assuntos
Poluentes Ambientais , Águas Residuárias , Elétrons , Peróxidos/química , Antibacterianos , Tetraciclina , Catálise , Poluentes Ambientais/química , Preparações Farmacêuticas
20.
Chemosphere ; 332: 138877, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37164191

RESUMO

With the advent of the industrial revolution, the accumulation of persistent organic pollutants (POPs) in the environment has become ubiquitous. POPs are halogen-containing organic molecules that accumulate, and remain in the environment for a long time, thus causing toxic effects in living organisms. POPs exhibit a high affinity towards biological macromolecules such as nucleic acids, proteins and lipids, causing genotoxicity and impairment of homeostasis in living organisms. Proteins are essential members of the biological assembly, as they stipulate all necessary processes for the survival of an organism. Owing to their stereochemical features, POPs and their metabolites form energetically favourable complexes with proteins, as supported by biological and dose-dependent toxicological studies. Although individual studies have reported the biological aspects of protein-POP interactions, no comprehensive study summarizing the structural mechanisms, thermodynamics and kinetics of protein-POP complexes is available. The current review identifies and classifies protein-POP interaction according to the structural and functional basis of proteins into five major protein targets, including digestive and other enzymes, serum proteins, transcription factors, transporters, and G-protein coupled receptors. Further, analysis detailing the molecular interactions and structural mechanism evidenced that H-bonds, van der Waals, and hydrophobic interactions essentially mediate the formation of protein-POP complexes. Moreover, interaction of POPs alters the protein conformation through kinetic and thermodynamic processes like competitive inhibition and allostery to modulate the cellular signalling processes, resulting in various pathological conditions such as cancers and inflammations. In summary, the review provides a comprehensive insight into the critical structural/molecular aspects of protein-POP interactions.


Assuntos
Poluentes Ambientais , Poluentes Orgânicos Persistentes , Compostos Orgânicos/química , Poluentes Ambientais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...